

System Interface Assembly

Dwight A. Geer dwight.a.geer@jpl.nasa.gov

June 6, 2001

Description

- The System Interface Assembly development is in-house (JPL)
 - Prototype SIA (PT) based on Xilinx Virtex 1000e 560 pin Ball Grid Array FPGA
 - Engineering Model (EM) baseline replaces FPGA with Honeywell HX3800 ASIC
 - Flight Model (FM)
- System Interface Assembly components
 - Double-sided Compact PCI card
 - Radhard SIA ASIC
 - Radhard UTMC BCRTM ASIC
 - Radhard BAE SYSTEMS 128Kx32 SRAM Modules
 - Radhard Intersil RS422 Driver/Receivers
 - Radhard QTECH 12MHz Oscillator
- Interfaces
 - CompactPCI bus
 - Redundant SDST or STM Uplink and Downlink Interfaces
 - Redundant 1553 Interfaces (low power differential implementation)
 - Four High Speed Synchronous Serial Command and Telemetry Interfaces
- Tz (Time Zero) Umbilical Support Interface June 6, 2001

Block Diagram

June 6, 2001

SIA ASIC Description

- The SIA ASIC provides most of the functionality of the SIA card.
 - The EM/FM SIA ASIC operates on 3.3 volts

The ASIC provides the following major blocks:

- PCI Target Core
 - 33 MHz, 32-bit operations
 - 1 PCI Interrupt
- PCI Rate Buffer Core
 - 1 write (35 x 8 words) and 4 read (32 x 8 words) FIFOs
- Memory FIFO Control Core
 - Configures 1 Mbyte SRAM partitioned into 10 buffers
 - This memory is used as buffer memory between PCI system card and serial interface peripherals. It can be partitioned up to 10 individual buffers, i.e. configurable to optimize a target system whether it uses 1 or all 10 of the buffers.
 - Watermarks, Stale-Timer and "frame done" interrupts provide software flexibility
 - Memory Arbiter A Fair Round-Robin arbiter

SIA ASIC Description

- Uplink Core
 - Configurable to support SDST or STM redundant Uplink Command bit serial interfaces
 - SDST Mode:
 - Hardware Command Decoder
 - Provides pulsed decode capability to enable spacecraft reset independent of software
 - 7 level discrete general-purpose hardware decoded commands
 - Performs error checking and bit stream polarity resolution
 - STM Mode:
 - Uplink Command Serial Peripheral Interface (SPI)
- Downlink Core
 - Configurable to support SDST or STM redundant Downlink Telemetry bit serial interfaces
 - SDST Mode:
 - Configurable to support 3 encoding modes: Reed-Solomon, Turbo or no encoding
 - Configurable to provide Pseudo-Randomization of the data
 - STM Mode:
 - Downlink Telemetry Serial Peripheral Interface (SPI)

Note: Either STM or SDST style interfaces may be selected by software (triplicate voted in hardware)

- UTMC BCRTM 1553 ASIC Controller Core
 - Typically used as Bus controller to command and retrieve housekeeping data to/from SDST/STM
 - The BCRTM Controller Core, controlling the UTMC ASIC, can be used as a general purpose Bus Controller or Remote Terminal for many other applications
 - Timed command capability allowing 1 μs resolution command issuance
 - Direct Access tap (intended for RS422 buffers) provides for the 1553 users to monitor 1553 traffic during integration and for closed loop testing support
- Four high-speed synchronous serial command interface Cores
 - SIA \rightarrow sensor/instrument interfaces typically used to command a sensor or instrument
 - 1 Mbps serial interface
 - Timed command capability allowing 1 μs resolution command issuance
 - Three wire hardware interface (clock, data, frame)
- Four high speed synchronous serial telemetry interface Cores
 - Sensor/instrument → SIA interfaces typically used to collect sensor or science data
 - SIA supports interface rates to 6 Mbps
 - Three wire hardware interface (clock, data, frame)

- Time Zero (Tz) Umbilical Support Functions
 - Tz Uplink
 - Uplink commands may be directed toward SIA HCD or may be rerouted to STM
 - Tz Echo Command Monitor
 - Provides method to monitor the spacecraft command source whether it is Tz, SDST or STM
 - Tz Downlink
 - Serial data and clock interface which forwards STM produced telemetry data (if STM mode selected) or SIA encoded telemetry (if SDST mode selected)
- Targeted to a radiation hardened ASIC Foundry.

Picture of the SIA PT

Picture of the SIA PT

Key Requirements

- The SIA provides the PCI bridge function to:
 - Four sensors
 - Two Telecommunication Subsystems
 - SDSTs (Small Deep Space Transponder) OR
 - STMs (Spacecraft Transponding Modem).
- PCI Target: 32 bit 33 MHz CompactPCI Bus Specification, PCIMG 2.0 R2.1
 - 1 PCI interrupt (INTA): all interrupts sources are maskable
- SIA clock: 32 bits and 1 µsec resolution (read/write)
- Buffer memory: 1 Mbyte
 - Configurable by software for each interface
 - Configurable Pointers: Top, Bottom, Watermark
- Double-Sided CompactPCI 3U card
 - Mass estimate: 0.5Kg
 - Power Estimate:

		<u>Idle</u>	<u>Typ</u>	<u>Max</u>
•	PT:	3.2W	6.5W	7.1W
•	EM/FM:	3.5W	5.5W	6.2W

Key Requirements

- Spacecraft Transponding Modem (STM) interface:
 - Redundant 1553 interface for engineering data, status and control
 - Redundant Serial Peripheral Interface (SPI)
 - Issues instantaneous serial telemetry output data rate of 4.1 Mbps to the STM
 - Uplink rate on SPI command interface is 2.0 Mbps
- Small Deep Space Transponder (SDST) interface:
 - Redundant 1553 interfaces for engineering and status and data
 - Redundant serial interfaces (one each for command and telemetry) to each transponder
 - Downlink encoding: no encoding, the Reed Solomon Encoder or the Turbo Encoder
 - Downlink telemetry rates: 5 bps and 250 kbps (actual maximum rate could be higher to support test activity)
 - Uplink Hardware Commands: 8 discrete outputs settable (One output is an active low pulsed signal used as a hardware decoded reset)
 - Direct Access port: supports command data rate up to 250 kbps
- High speed synchronous serial interfaces (4 input and 4 output)
 - Command interface: 1 Mbps instantaneous serial link data transfers per channel
 - Telemetry interface: 6Mbps instantaneous serial link data transfers per channel
 - Instrument interfaces can be reset independently of all other interfaces

Current Status

- PDR August 2000
- CDR August 2001
- First SIA PT (to test) February 2001
- SIA ASIC Pre-PDR Tape Out October 2001
- SIA ASIC PDR Tape Out November 2001
- SIA ASIC CDR January 2002
- First SIA EM (POD ASIC) May 2002
- First SIA EM (EM ASIC) August 2002
- EM QUAL Complete August 2002
- First SIA FM September 2002

System Interface Assembly

Dwight A. Geer dwight.a.geer@jpl.nasa.gov

June 6, 2001

Description

- The System Interface Assembly development is in-house (JPL)
 - Prototype SIA (PT) based on Xilinx Virtex 1000e 560 pin Ball Grid Array FPGA
 - Engineering Model (EM) baseline replaces FPGA with Honeywell HX3800 ASIC
 - Flight Model (FM)
- System Interface Assembly components
 - Double-sided Compact PCI card
 - Radhard SIA ASIC
 - Radhard UTMC BCRTM ASIC
 - Radhard BAE SYSTEMS 128Kx32 SRAM Modules
 - Radhard Intersil RS422 Driver/Receivers
 - Radhard QTECH 12MHz Oscillator
- Interfaces
 - CompactPCI bus
 - Redundant SDST or STM Uplink and Downlink Interfaces
 - Redundant 1553 Interfaces (low power differential implementation)
 - Four High Speed Synchronous Serial Command and Telemetry Interfaces
- Tz (Time Zero) Umbilical Support Interface June 6, 2001

Block Diagram

June 6, 2001

SIA ASIC Description

- The SIA ASIC provides most of the functionality of the SIA card.
 - The EM/FM SIA ASIC operates on 3.3 volts

The ASIC provides the following major blocks:

- PCI Target Core
 - 33 MHz, 32-bit operations
 - 1 PCI Interrupt
- PCI Rate Buffer Core
 - 1 write (35 x 8 words) and 4 read (32 x 8 words) FIFOs
- Memory FIFO Control Core
 - Configures 1 Mbyte SRAM partitioned into 10 buffers
 - This memory is used as buffer memory between PCI system card and serial interface peripherals. It can be partitioned up to 10 individual buffers, i.e. configurable to optimize a target system whether it uses 1 or all 10 of the buffers.
 - Watermarks, Stale-Timer and "frame done" interrupts provide software flexibility
 - Memory Arbiter A Fair Round-Robin arbiter

SIA ASIC Description

- Uplink Core
 - Configurable to support SDST or STM redundant Uplink Command bit serial interfaces
 - SDST Mode:
 - Hardware Command Decoder
 - Provides pulsed decode capability to enable spacecraft reset independent of software
 - 7 level discrete general-purpose hardware decoded commands
 - Performs error checking and bit stream polarity resolution
 - STM Mode:
 - Uplink Command Serial Peripheral Interface (SPI)
- Downlink Core
 - Configurable to support SDST or STM redundant Downlink Telemetry bit serial interfaces
 - SDST Mode:
 - Configurable to support 3 encoding modes: Reed-Solomon, Turbo or no encoding
 - Configurable to provide Pseudo-Randomization of the data
 - STM Mode:
 - Downlink Telemetry Serial Peripheral Interface (SPI)

Note: Either STM or SDST style interfaces may be selected by software (triplicate voted in hardware)

- UTMC BCRTM 1553 ASIC Controller Core
 - Typically used as Bus controller to command and retrieve housekeeping data to/from SDST/STM
 - The BCRTM Controller Core, controlling the UTMC ASIC, can be used as a general purpose Bus Controller or Remote Terminal for many other applications
 - Timed command capability allowing 1 μs resolution command issuance
 - Direct Access tap (intended for RS422 buffers) provides for the 1553 users to monitor
 1553 traffic during integration and for closed loop testing support
- Four high-speed synchronous serial command interface Cores
 - SIA → sensor/instrument interfaces typically used to command a sensor or instrument
 - 1 Mbps serial interface
 - Timed command capability allowing 1 μs resolution command issuance
 - Three wire hardware interface (clock, data, frame)
- Four high speed synchronous serial telemetry interface Cores
 - Sensor/instrument → SIA interfaces typically used to collect sensor or science data
 - SIA supports interface rates to 6 Mbps
 - Three wire hardware interface (clock, data, frame)

- Time Zero (Tz) Umbilical Support Functions
 - Tz Uplink
 - Uplink commands may be directed toward SIA HCD or may be rerouted to STM
 - Tz Echo Command Monitor
 - Provides method to monitor the spacecraft command source whether it is Tz, SDST or STM
 - Tz Downlink
 - Serial data and clock interface which forwards STM produced telemetry data (if STM mode selected) or SIA encoded telemetry (if SDST mode selected)
- Targeted to a radiation hardened ASIC Foundry.

Picture of the SIA PT

Picture of the SIA PT

Key Requirements

- The SIA provides the PCI bridge function to:
 - Four sensors
 - Two Telecommunication Subsystems
 - SDSTs (Small Deep Space Transponder) OR
 - STMs (Spacecraft Transponding Modem).
- PCI Target: 32 bit 33 MHz CompactPCI Bus Specification, PCIMG 2.0 R2.1
 - 1 PCI interrupt (INTA): all interrupts sources are maskable
- SIA clock: 32 bits and 1 µsec resolution (read/write)
- Buffer memory: 1 Mbyte
 - Configurable by software for each interface
 - Configurable Pointers: Top, Bottom, Watermark
- Double-Sided CompactPCI 3U card
 - Mass estimate: 0.5Kg
 - Power Estimate:

		<u>Idle</u>	<u>Typ</u>	<u>Max</u>
•	PT:	3.2W	6.5W	7.1W
•	EM/FM:	3.5W	5.5W	6.2W

Key Requirements

- Spacecraft Transponding Modem (STM) interface:
 - Redundant 1553 interface for engineering data, status and control
 - Redundant Serial Peripheral Interface (SPI)
 - Issues instantaneous serial telemetry output data rate of 4.1 Mbps to the STM
 - Uplink rate on SPI command interface is 2.0 Mbps
- Small Deep Space Transponder (SDST) interface:
 - Redundant 1553 interfaces for engineering and status and data
 - Redundant serial interfaces (one each for command and telemetry) to each transponder
 - Downlink encoding: no encoding, the Reed Solomon Encoder or the Turbo Encoder
 - Downlink telemetry rates: 5 bps and 250 kbps (actual maximum rate could be higher to support test activity)
 - Uplink Hardware Commands: 8 discrete outputs settable (One output is an active low pulsed signal used as a hardware decoded reset)
 - Direct Access port: supports command data rate up to 250 kbps
- High speed synchronous serial interfaces (4 input and 4 output)
 - Command interface: 1 Mbps instantaneous serial link data transfers per channel
 - Telemetry interface: 6Mbps instantaneous serial link data transfers per channel
 - Instrument interfaces can be reset independently of all other interfaces

Current Status

- PDR August 2000
- CDR August 2001
- First SIA PT (to test) February 2001
- SIA ASIC Pre-PDR Tape Out October 2001
- SIA ASIC PDR Tape Out November 2001
- SIA ASIC CDR January 2002
- First SIA EM (POD ASIC) May 2002
- First SIA EM (EM ASIC) August 2002
- EM QUAL Complete August 2002
- First SIA FM September 2002